• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Downscaling climate projections over large and data sparse regions: Methodological application in the Zambezi River Basin
 
  • Détails
Titre

Downscaling climate projections over large and data sparse regions: Methodological application in the Zambezi River Basin

Type
article
Institution
Externe
Périodique
International Journal of Climatology  
Auteur(s)
Peleg, Nadav
Auteure/Auteur
Sinclair, Scott
Auteure/Auteur
Fatichi, Simone
Auteure/Auteur
Burlando, Paolo
Auteure/Auteur
Liens vers les personnes
Peleg, Nadav  
ISSN
0899-8418
Statut éditorial
Publié
Date de publication
2020-12
Volume
40
Numéro
15
Première page
6242
Dernière page/numéro d’article
6264
Peer-reviewed
Oui
Langue
anglais
Résumé
Climate impact studies often require climate data at a higher space–time resolution than is available from global and regional climate models. Weather generator (WG) models, generally designed for mesoscale applications (e.g., 101–105 km2), are popular and widely used tools to downscale climate data to finer resolution. One advantage of using WGs is their ability to generate the necessary climate variables for impact studies in data sparse regions. In this study, we evaluate the ability of a previously established state of the art WG (the AWE-GEN-2d model) to perform in data sparse regions that are beyond the mesoscale, using the Zambezi River basin (106 km2) in southeast Africa as a case study. The AWE-GEN-2d model was calibrated using data from satellite retrievals and climate re-analysis products in place of the absent observational data. An 8-km climate ensemble at hourly resolution, covering the period of 1976–2099 (present climate and RCP4.5 emission scenario from 2020), was then simulated. Using the simulated 30-member ensemble, climate indices for both present and future climates were computed. The high-resolution climate indices allow detailed analysis of the effects of climate change on different areas within the basin. For example, the southwestern area of the basin is predicted to experience the greatest change due to increased temperature, while the southeastern area was found to be already so hot that is less affected (e.g., the number of 'very hot days' per year increase by 18 and 9 days, respectively). Rainfall intensities are found to increase most in the eastern areas of the basin (1 mm·d−1) in comparison to the western region (0.3 mm·d−1). As demonstrated in this study, AWE-GEN-2d can be calibrated successfully using data from climate reanalysis products in the absence of ground station data and can be applied at larger scales than the mesoscale.
Sujets

Atmospheric Science

PID Serval
serval:BIB_F901EF2DA59D
DOI
10.1002/joc.6578
WOS
000525837000001
Permalien
https://iris.unil.ch/handle/iris/241751
Open Access
Oui
Date de création
2021-08-09T14:03:58.801Z
Date de création dans IRIS
2025-05-21T05:56:00Z
  • Copyright © 2024 UNIL
  • Informations légales