• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Predictive analysis and mapping of indoor radon concentrations in a complex environment using kernel estimation: an application to Switzerland.
 
  • Détails
Titre

Predictive analysis and mapping of indoor radon concentrations in a complex environment using kernel estimation: an application to Switzerland.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Science of the Total Environment  
Auteur(s)
Kropat, G.
Auteure/Auteur
Bochud, F.
Auteure/Auteur
Jaboyedoff, M.
Auteure/Auteur
Laedermann, J.P.
Auteure/Auteur
Murith, C.
Auteure/Auteur
Palacios Gruson, M.
Auteure/Auteur
Baechler, S.
Auteure/Auteur
Liens vers les personnes
Bochud, François  
Laedermann, Jean-Pascal  
Kropat, Georg  
Baechler, Sebastien  
Liens vers les unités
Radiophysique  
ISSN
1879-1026
Statut éditorial
Publié
Date de publication
2015
Volume
505
Première page
137
Dernière page/numéro d’article
148
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article Publication Status: ppublish
Résumé
PURPOSE: The aim of this study was to develop models based on kernel regression and probability estimation in order to predict and map IRC in Switzerland by taking into account all of the following: architectural factors, spatial relationships between the measurements, as well as geological information.
METHODS: We looked at about 240,000 IRC measurements carried out in about 150,000 houses. As predictor variables we included: building type, foundation type, year of construction, detector type, geographical coordinates, altitude, temperature and lithology into the kernel estimation models. We developed predictive maps as well as a map of the local probability to exceed 300 Bq/m(3). Additionally, we developed a map of a confidence index in order to estimate the reliability of the probability map.
RESULTS: Our models were able to explain 28% of the variations of IRC data. All variables added information to the model. The model estimation revealed a bandwidth for each variable, making it possible to characterize the influence of each variable on the IRC estimation. Furthermore, we assessed the mapping characteristics of kernel estimation overall as well as by municipality. Overall, our model reproduces spatial IRC patterns which were already obtained earlier. On the municipal level, we could show that our model accounts well for IRC trends within municipal boundaries. Finally, we found that different building characteristics result in different IRC maps. Maps corresponding to detached houses with concrete foundations indicate systematically smaller IRC than maps corresponding to farms with earth foundation.
CONCLUSIONS: IRC mapping based on kernel estimation is a powerful tool to predict and analyze IRC on a large-scale as well as on a local level. This approach enables to develop tailor-made maps for different architectural elements and measurement conditions and to account at the same time for geological information and spatial relations between IRC measurements.
PID Serval
serval:BIB_DAD907331FF0
DOI
10.1016/j.scitotenv.2014.09.064
PMID
25314691
WOS
000347654900013
Permalien
https://iris.unil.ch/handle/iris/253531
Date de création
2015-02-21T12:56:58.339Z
Date de création dans IRIS
2025-05-21T06:53:19Z
  • Copyright © 2024 UNIL
  • Informations légales