• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.
 
  • Détails
Titre

A Multi-Method Approach for Proteomic Network Inference in 11 Human Cancers.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
PLoS Computational Biology  
Auteur(s)
Şenbabaoğlu, Y.
Auteure/Auteur
Sümer, S.O.
Auteure/Auteur
Sánchez-Vega, F.
Auteure/Auteur
Bemis, D.
Auteure/Auteur
Ciriello, G.
Auteure/Auteur
Schultz, N.
Auteure/Auteur
Sander, C.
Auteure/Auteur
Liens vers les personnes
Ciriello, Giovanni  
Liens vers les unités
Médecine génétique  
ISSN
1553-7358
Statut éditorial
Publié
Date de publication
2016
Volume
12
Numéro
2
Première page
e1004765
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural Publication Status: epublish
Résumé
Protein expression and post-translational modification levels are tightly regulated in neoplastic cells to maintain cellular processes known as 'cancer hallmarks'. The first Pan-Cancer initiative of The Cancer Genome Atlas (TCGA) Research Network has aggregated protein expression profiles for 3,467 patient samples from 11 tumor types using the antibody based reverse phase protein array (RPPA) technology. The resultant proteomic data can be utilized to computationally infer protein-protein interaction (PPI) networks and to study the commonalities and differences across tumor types. In this study, we compare the performance of 13 established network inference methods in their capacity to retrieve the curated Pathway Commons interactions from RPPA data. We observe that no single method has the best performance in all tumor types, but a group of six methods, including diverse techniques such as correlation, mutual information, and regression, consistently rank highly among the tested methods. We utilize the high performing methods to obtain a consensus network; and identify four robust and densely connected modules that reveal biological processes as well as suggest antibody-related technical biases. Mapping the consensus network interactions to Reactome gene lists confirms the pan-cancer importance of signal transduction pathways, innate and adaptive immune signaling, cell cycle, metabolism, and DNA repair; and also suggests several biological processes that may be specific to a subset of tumor types. Our results illustrate the utility of the RPPA platform as a tool to study proteomic networks in cancer.
Sujets

Cluster Analysis

Databases, Protein

Gene Expression Profi...

Humans

Neoplasm Proteins/ana...

Neoplasm Proteins/gen...

Neoplasms/genetics

Neoplasms/metabolism

Principal Component A...

Protein Interaction M...

Proteomics/methods

Software

PID Serval
serval:BIB_143EFDA31CDA
DOI
10.1371/journal.pcbi.1004765
PMID
26928298
Permalien
https://iris.unil.ch/handle/iris/95486
Open Access
Oui
Date de création
2016-06-26T14:23:53.461Z
Date de création dans IRIS
2025-05-20T18:14:01Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

BIB_143EFDA31CDA.P001.pdf

Version du manuscrit

preprint

Taille

7.43 MB

Format

Adobe PDF

PID Serval

serval:BIB_143EFDA31CDA.P001

URN

urn:nbn:ch:serval-BIB_143EFDA31CDA7

Somme de contrôle

(MD5):00c87d32b34d3d92bbb590a140a6e09b

  • Copyright © 2024 UNIL
  • Informations légales