• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Finite element approximation of multi-scale elliptic problems using patches of elements
 
  • Détails
Titre

Finite element approximation of multi-scale elliptic problems using patches of elements

Type
article
Institution
Externe
Périodique
Numerische Mathematik  
Auteur(s)
Glowinski, R.
Auteure/Auteur
He, J.
Auteure/Auteur
Lozinski, A.
Auteure/Auteur
Rappaz, J.
Auteure/Auteur
Wagner, J.
Auteure/Auteur
Liens vers les personnes
Wagner, Joël  
ISSN
0029-599X
Statut éditorial
Publié
Date de publication
2005
Volume
101
Numéro
4
Première page
663
Dernière page/numéro d’article
687
Peer-reviewed
Oui
Langue
anglais
Résumé
In this paper we present a method for the numerical solution of elliptic problems with multi-scale data using multiple levels of not necessarily nested grids. The method consists in calculating successive corrections to the solution in patches whose discretizations are not necessarily conforming. This paper provides proofs of the results published earlier (see C. R. Acad. Sci. Paris, Ser. I 337 (2003) 679-684), gives a generalization of the latter to more than two domains and contains extensive numerical illustrations. New results including the spectral analysis of the iteration operator and a numerical method to evaluate the constant of the strengthened Cauchy-Buniakowski-Schwarz inequality are presented.In this paper we present a method for the numerical solution of elliptic problems with multi-scale data using multiple levels of not necessarily nested grids. The method consists in calculating successive corrections to the solution in patches whose discretizations are not necessarily conforming. This paper provides proofs of the results published earlier (see C. R. Acad. Sci. Paris, Ser. I 337 (2003) 679-684), gives a generalization of the latter to more than two domains and contains extensive numerical illustrations. New results including the spectral analysis of the iteration operator and a numerical method to evaluate the constant of the strengthened Cauchy-Buniakowski-Schwarz inequality are presented.
PID Serval
serval:BIB_DBEE229A5006
DOI
10.1007/s00211-005-0614-5
WOS
000232531100005
Permalien
https://iris.unil.ch/handle/iris/230854
Date de création
2014-07-07T07:37:06.528Z
Date de création dans IRIS
2025-05-21T05:10:15Z
  • Copyright © 2024 UNIL
  • Informations légales