• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.
 
  • Détails
Titre

Which surrogate insulin resistance indices best predict coronary artery disease? A machine learning approach.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Cardiovascular Diabetology  
Auteur(s)
Mirjalili, S.R.
Auteure/Auteur
Soltani, S.
Auteure/Auteur
Meybodi, Z.H.
Auteure/Auteur
Marques-Vidal, P.
Auteure/Auteur
Firouzabadi, D.D.
Auteure/Auteur
Eshraghi, R.
Auteure/Auteur
Restrepo, D.
Auteure/Auteur
Ghoshouni, H.
Auteure/Auteur
Sarebanhassanabadi, M.
Auteure/Auteur
Liens vers les personnes
Marques-Vidal, Pedro Manuel  
Liens vers les unités
Service de médecine interne  
ISSN
1475-2840
Statut éditorial
Publié
Date de publication
2024-06-21
Volume
23
Numéro
1
Première page
214
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article ; Comparative Study
Publication Status: epublish
Résumé
Various surrogate markers of insulin resistance have been developed, capable of predicting coronary artery disease (CAD) without the need to detect serum insulin. For accurate prediction, they depend only on glucose and lipid profiles, as well as anthropometric features. However, there is still no agreement on the most suitable one for predicting CAD.
We followed a cohort of 2,000 individuals, ranging in age from 20 to 74, for a duration of 9.9 years. We utilized multivariate Cox proportional hazard models to investigate the association between TyG-index, TyG-BMI, TyG-WC, TG/HDL, plus METS-IR and the occurrence of CAD. The receiver operating curve (ROC) was employed to compare the predictive efficacy of these indices and their corresponding cutoff values for predicting CAD. We also used three distinct embedded feature selection methods: LASSO, Random Forest feature selection, and the Boruta algorithm, to evaluate and compare surrogate markers of insulin resistance in predicting CAD. In addition, we utilized the ceteris paribus profile on the Random Forest model to illustrate how the model's predictive performance is affected by variations in individual surrogate markers, while keeping all other factors consistent in a diagram.
The TyG-index was the only surrogate marker of insulin resistance that demonstrated an association with CAD in fully adjusted model (HR: 2.54, CI: 1.34-4.81). The association was more prominent in females. Moreover, it demonstrated the highest area under the ROC curve (0.67 [0.63-0.7]) in comparison to other surrogate indices for insulin resistance. All feature selection approaches concur that the TyG-index is the most reliable surrogate insulin resistance marker for predicting CAD. Based on the Ceteris paribus profile of Random Forest the predictive ability of the TyG-index increased steadily after 9 with a positive slope, without any decline or leveling off.
Due to the simplicity of assessing the TyG-index with routine biochemical assays and given that the TyG-index was the most effective surrogate insulin resistance index for predicting CAD based on our results, it seems suitable for inclusion in future CAD prevention strategies.
Sujets

Humans

Insulin Resistance

Coronary Artery Disea...

Coronary Artery Disea...

Female

Male

Middle Aged

Predictive Value of T...

Biomarkers/blood

Machine Learning

Aged

Risk Assessment

Adult

Prognosis

Young Adult

Risk Factors

Time Factors

Insulin/blood

Blood Glucose/metabol...

Cardiovascular diseas...

Machine learning

Metabolic diseases

Public Health

PID Serval
serval:BIB_804584375B49
DOI
10.1186/s12933-024-02306-y
PMID
38907271
WOS
001252334900003
Permalien
https://iris.unil.ch/handle/iris/188185
Open Access
Oui
Date de création
2024-06-28T12:14:53.011Z
Date de création dans IRIS
2025-05-21T01:35:24Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

38907271_BIB_804584375B49.pdf

Version du manuscrit

published

Licence

https://creativecommons.org/licenses/by/4.0

Taille

2.07 MB

Format

Adobe PDF

PID Serval

serval:BIB_804584375B49.P001

URN

urn:nbn:ch:serval-BIB_804584375B499

Somme de contrôle

(MD5):ef9eff546ed3f68cca761d56060e607c

  • Copyright © 2024 UNIL
  • Informations légales