• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Learning systems in biosignal analysis
 
  • Détails
Titre

Learning systems in biosignal analysis

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
BioSystems  
Auteur(s)
Schizas, C. N.
Auteure/Auteur
Pattichis, C. S.
Auteure/Auteur
Liens vers les unités
Orthopédie et traumatologie  
ISSN
0303-2647
Statut éditorial
Publié
Date de publication
1997
Volume
41
Numéro
2
Première page
105
Dernière page/numéro d’article
25
Notes
Journal Article
Research Support, Non-U.S. Gov't
Résumé
In biosignal analysis, the utility of artificial neural networks (ANN) in classifying electromyographic (EMG) data trained with the momentum back propagation algorithm has recently been demonstrated. In the current study, the self-organizing feature map algorithm, the genetics-based machine learning (GBML) paradigm, and the K-means nearest neighbour clustering algorithm are applied on the same set of data. The aim of this exercise is to show how these three paradigms can be used in practice, given that their diagnostic performance is problem- and parameter-dependent. A total of 720 macro EMG recordings were carried out from four groups, from seven normal, nine motor neuron disease, 14 Becker's muscular dystrophy, and six spinal muscular atrophy subjects, respectively. Twenty-three of the subjects were used for training and 13 for evaluating the various models. For each subject, the mean and the standard deviation of the parameters (i) amplitude, (ii) area, (iii) average power and (iv) duration were extracted. The feature vector was structured in two different ways for input to the models: an eight-input feature vector that consisted of both the mean and the standard deviation of the four parameters measured, and a four-input feature vector that included only the mean of the parameters. Also, due to the heterogenous nature of the spinal muscular atrophy group, three class models that excluded this group were investigated. In general, self-organizing feature map and GBML models resulted in comparable diagnostic performance of the order of 80-90% correct classifications (CCs) score for the evaluation set, whereas the K-means nearest neighbour algorithm models gave lower percentage CCs. Furthermore, for all three learning paradigms: better diagnostic performance was obtained for the three class models compared with the four class models; similar diagnostic performance was obtained for both the eight- and four-input feature vectors. Finally, it is claimed that the proposed methodology followed in this work can be applied for the development of diagnostic systems in the analysis of biosignals.
Sujets

Algorithms Animals *C...

PID Serval
serval:BIB_9AA7C980B280
DOI
10.1016/S0303-2647(96)01668-1
PMID
9043680
WOS
A1997WG38800004
Permalien
https://iris.unil.ch/handle/iris/170506
Date de création
2008-01-28T11:27:03.711Z
Date de création dans IRIS
2025-05-21T00:07:16Z
  • Copyright © 2024 UNIL
  • Informations légales