• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data.
 
  • Détails
Titre

From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data.

Type
synthèse (review)
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Metabolites  
Auteur(s)
Ivanisevic, J.
Co-dernière auteure/Co-dernier auteur
Want, E.J.
Co-dernière auteure/Co-dernier auteur
Liens vers les personnes
Ivanisevic, Julijana  
Liens vers les unités
Plate-forme de métabolomique  
ISSN
2218-1989
Statut éditorial
Publié
Date de publication
2019-12-17
Volume
9
Numéro
12
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article ; Review
Publication Status: epublish
Résumé
Untargeted metabolomics (including lipidomics) is a holistic approach to biomarker discovery and mechanistic insights into disease onset and progression, and response to intervention. Each step of the analytical and statistical pipeline is crucial for the generation of high-quality, robust data. Metabolite identification remains the bottleneck in these studies; therefore, confidence in the data produced is paramount in order to maximize the biological output. Here, we outline the key steps of the metabolomics workflow and provide details on important parameters and considerations. Studies should be designed carefully to ensure appropriate statistical power and adequate controls. Subsequent sample handling and preparation should avoid the introduction of bias, which can significantly affect downstream data interpretation. It is not possible to cover the entire metabolome with a single platform; therefore, the analytical platform should reflect the biological sample under investigation and the question(s) under consideration. The large, complex datasets produced need to be pre-processed in order to extract meaningful information. Finally, the most time-consuming steps are metabolite identification, as well as metabolic pathway and network analysis. Here we discuss some widely used tools and the pitfalls of each step of the workflow, with the ultimate aim of guiding the reader towards the most efficient pipeline for their metabolomics studies.
Sujets

data processing

experimental design

liquid chromatography...

metabolic pathway and...

metabolism

metabolite identifica...

sample preparation

univariate and multiv...

untargeted metabolomi...

PID Serval
serval:BIB_E8044FA17AB4
DOI
10.3390/metabo9120308
PMID
31861212
WOS
000506676500001
Permalien
https://iris.unil.ch/handle/iris/256899
Open Access
Oui
Date de création
2020-01-03T15:09:41.715Z
Date de création dans IRIS
2025-05-21T07:07:46Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

31861212_BIB_E8044FA17AB4.pdf

Version du manuscrit

published

Licence

https://creativecommons.org/licenses/by/4.0

Taille

3.15 MB

Format

Adobe PDF

PID Serval

serval:BIB_E8044FA17AB4.P001

URN

urn:nbn:ch:serval-BIB_E8044FA17AB41

Somme de contrôle

(MD5):652fc3fccb126ba01a66096945e86b52

  • Copyright © 2024 UNIL
  • Informations légales