Titre
A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Auteur(s)
Capogrosso, M.
Auteure/Auteur
Milekovic, T.
Auteure/Auteur
Borton, D.
Auteure/Auteur
Wagner, F.
Auteure/Auteur
Moraud, E.M.
Auteure/Auteur
Mignardot, J.B.
Auteure/Auteur
Buse, N.
Auteure/Auteur
Gandar, J.
Auteure/Auteur
Barraud, Q.
Auteure/Auteur
Xing, D.
Auteure/Auteur
Rey, E.
Auteure/Auteur
Duis, S.
Auteure/Auteur
Jianzhong, Y.
Auteure/Auteur
Ko, W.K.
Auteure/Auteur
Li, Q.
Auteure/Auteur
Detemple, P.
Auteure/Auteur
Denison, T.
Auteure/Auteur
Micera, S.
Auteure/Auteur
Bezard, E.
Auteure/Auteur
Bloch, J.
Auteure/Auteur
Courtine, G.
Auteure/Auteur
Liens vers les personnes
Liens vers les unités
ISSN
1476-4687
Statut éditorial
Publié
Date de publication
2016-11-09
Volume
539
Numéro
7628
Première page
284
Dernière page/numéro d’article
288
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: epublish
Publication Status: epublish
Résumé
Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain-computer interfaces have directly linked cortical activity to electrical stimulation of muscles, and have thus restored grasping abilities after hand paralysis. Theoretically, this strategy could also restore control over leg muscle activity for walking. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges. Recently, it was shown in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion. Here we interface leg motor cortex activity with epidural electrical stimulation protocols to establish a brain-spine interface that alleviated gait deficits after a spinal cord injury in non-human primates. Rhesus monkeys (Macaca mulatta) were implanted with an intracortical microelectrode array in the leg area of the motor cortex and with a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain-spine interface in intact (uninjured) monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain-spine interface restored weight-bearing locomotion of the paralysed leg on a treadmill and overground. The implantable components integrated in the brain-spine interface have all been approved for investigational applications in similar human research, suggesting a practical translational pathway for proof-of-concept studies in people with spinal cord injury.
PID Serval
serval:BIB_C387724F3B01
PMID
Date de création
2016-12-05T17:53:17.606Z
Date de création dans IRIS
2025-05-20T23:24:31Z
Fichier(s)![Vignette d'image]()
En cours de chargement...
Nom
27830790_BIB_C387724F3B01.pdf
Version du manuscrit
postprint
Taille
6.37 MB
Format
Adobe PDF
PID Serval
serval:BIB_C387724F3B01.P001
URN
urn:nbn:ch:serval-BIB_C387724F3B015
Somme de contrôle
(MD5):86394a17b737ee06c626b6c3c5ad6198