• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. STrack: A Tool to Simply Track Bacterial Cells in Microscopy Time-Lapse Images.
 
  • Détails
Titre

STrack: A Tool to Simply Track Bacterial Cells in Microscopy Time-Lapse Images.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
mSphere  
Auteur(s)
Todorov, H.
Auteure/Auteur
Miguel Trabajo, T.
Auteure/Auteur
van der Meer, J.R.
Auteure/Auteur
Liens vers les personnes
van der Meer, Jan Roelof  
Miguel Trabajo, Tania  
Todorov, Helena  
Liens vers les unités
Dép. microbiologie fondamentale  
ISSN
2379-5042
Statut éditorial
Publié
Date de publication
2023-04-20
Volume
8
Numéro
2
Première page
e0065822
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Résumé
Bacterial growth can be studied at the single cell level through time-lapse microscopy imaging. Technical advances in microscopy lead to increasing image quality, which in turn allows to visualize larger areas of growth, containing more and more cells. In this context, the use of automated computational tools becomes essential. In this paper, we present STrack, a tool that allows to track cells in time-lapse images in a fast and efficient way. We compared it to 3 recently published tracking tools on images ranging over 6 different bacterial strains with various morphologies. STrack showed to be the most consistent tracking tool, returning more than 80% of correct cell lineages on average, in comparison to manually annotated ground-truth. The python implementation of STrack, a docker structure, and a tutorial on how to download and use the tool can be found on the following github page: https://github.com/Helena-todd/STrack. IMPORTANCE Automated image analysis of growing prokaryotic cell populations becomes indispensable with larger data sets, such as derived by time-lapse microscopy. The tracking of the same individual cells and their daughter lineages is cumbersome and prone to errors in image alignment or poor resolution. Here, we present a simplified but highly effective tool for non-specialists to engage in cell tracking. The tool can be downloaded and run as a contained script-structure requiring minimal user input. Run times are fast, in comparison to other equivalent tools, and outputs consist of cell tables that can be subsequently used for lineage analysis, for which we offer examples. By providing open code, training data sets, as well as simplified script execution, we aimed to facilitate wide usage and further tool development for image analysis.
Sujets

Microscopy/methods

Software

Time-Lapse Imaging/me...

Image Processing, Com...

Cell Tracking/methods...

algorithm

bioinformatics

cell tracking

image analysis

soil microbiology

PID Serval
serval:BIB_CC63374B0997
DOI
10.1128/msphere.00658-22
PMID
36939355
WOS
000956181000001
Permalien
https://iris.unil.ch/handle/iris/167574
Open Access
Oui
Date de création
2023-03-24T12:26:31.670Z
Date de création dans IRIS
2025-05-20T23:55:08Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

36939355_BIB_CC63374B0997.pdf

Version du manuscrit

published

Licence

https://creativecommons.org/licenses/by/4.0

Taille

2.22 MB

Format

Adobe PDF

PID Serval

serval:BIB_CC63374B0997.P001

URN

urn:nbn:ch:serval-BIB_CC63374B09979

Somme de contrôle

(MD5):ffaec6eb81bf0f6e98a7cdcb1b5b67f5

  • Copyright © 2024 UNIL
  • Informations légales