Titre
Human iPSC-Derived Cortical Neurons Display Homeostatic Plasticity.
Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Auteur(s)
Cordella, F.
Auteure/Auteur
Ferrucci, L.
Auteure/Auteur
D'Antoni, C.
Auteure/Auteur
Ghirga, S.
Auteure/Auteur
Brighi, C.
Auteure/Auteur
Soloperto, A.
Auteure/Auteur
Gigante, Y.
Auteure/Auteur
Ragozzino, D.
Auteure/Auteur
Bezzi, P.
Auteure/Auteur
Di Angelantonio, S.
Auteure/Auteur
Liens vers les personnes
Liens vers les unités
ISSN
2075-1729
Statut éditorial
Publié
Date de publication
2022-11-14
Volume
12
Numéro
11
Première page
1884
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
Maintaining the excitability of neurons and circuits is fundamental for healthy brain functions. The global compensatory increase in excitatory synaptic strength, in response to decreased activity, is one of the main homeostatic mechanisms responsible for such regulation. This type of plasticity has been extensively characterized in rodents in vivo and in vitro, but few data exist on human neurons maturation. We have generated an in vitro cortical model system, based on differentiated human-induced pluripotent stem cells, chronically treated with tetrodotoxin, to investigate homeostatic plasticity at different developmental stages. Our findings highlight the presence of homeostatic plasticity in human cortical networks and show that the changes in synaptic strength are due to both pre- and post-synaptic mechanisms. Pre-synaptic plasticity involves the potentiation of neurotransmitter release machinery, associated to an increase in synaptic vesicle proteins expression. At the post-synaptic level, we report an increase in the expression of post-synaptic density proteins, involved in glutamatergic receptor anchoring. These results extend our understanding of neuronal homeostasis and reveal the developmental regulation of its expression in human cortical networks. Since induced pluripotent stem cell-derived neurons can be obtained from patients with neurodevelopmental and neurodegenerative diseases, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.
PID Serval
serval:BIB_D8F171422569
PMID
Open Access
Oui
Date de création
2022-12-05T14:38:03.665Z
Date de création dans IRIS
2025-05-21T03:39:58Z
Fichier(s)![Vignette d'image]()
En cours de chargement...
Nom
36431019_BIB_D8F171422569.pdf
Version du manuscrit
published
Licence
https://creativecommons.org/licenses/by/4.0
Taille
2.3 MB
Format
Adobe PDF
PID Serval
serval:BIB_D8F171422569.P001
URN
urn:nbn:ch:serval-BIB_D8F1714225699
Somme de contrôle
(MD5):13a9d83b8aa8b5fd265736645cfe82b1