• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Interactive process mining of cancer treatment sequences with melanoma real-world data.
 
  • Détails
Titre

Interactive process mining of cancer treatment sequences with melanoma real-world data.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Frontiers in Oncology  
Auteur(s)
Wicky, A.
Auteure/Auteur
Gatta, R.
Auteure/Auteur
Latifyan, S.
Auteure/Auteur
Micheli, R.
Auteure/Auteur
Gerard, C.
Auteure/Auteur
Pradervand, S.
Auteure/Auteur
Michielin, O.
Auteure/Auteur
Cuendet, M.A.
Auteure/Auteur
Liens vers les personnes
Michielin, Olivier  
Wicky, Alexandre  
Liens vers les unités
Oncologie médicale  
Oncologie de précision  
ISSN
2234-943X
Statut éditorial
Publié
Date de publication
2023
Volume
13
Première page
1043683
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Résumé
The growing availability of clinical real-world data (RWD) represents a formidable opportunity to complement evidence from randomized clinical trials and observe how oncological treatments perform in real-life conditions. In particular, RWD can provide insights on questions for which no clinical trials exist, such as comparing outcomes from different sequences of treatments. To this end, process mining is a particularly suitable methodology for analyzing different treatment paths and their associated outcomes. Here, we describe an implementation of process mining algorithms directly within our hospital information system with an interactive application that allows oncologists to compare sequences of treatments in terms of overall survival, progression-free survival and best overall response. As an application example, we first performed a RWD descriptive analysis of 303 patients with advanced melanoma and reproduced findings observed in two notorious clinical trials: CheckMate-067 and DREAMseq. Then, we explored the outcomes of an immune-checkpoint inhibitor rechallenge after a first progression on immunotherapy versus switching to a BRAF targeted treatment. By using interactive process-oriented RWD analysis, we observed that patients still derive long-term survival benefits from immune-checkpoint inhibitors rechallenge, which could have direct implications on treatment guidelines for patients able to carry on immune-checkpoint therapy, if confirmed by external RWD and randomized clinical trials. Overall, our results highlight how an interactive implementation of process mining can lead to clinically relevant insights from RWD with a framework that can be ported to other centers or networks of centers.
Sujets

immunotherapy

melanoma

precision oncology

process mining

real-world data

targeted treatment

treatment sequence

PID Serval
serval:BIB_DD5F930248D5
DOI
10.3389/fonc.2023.1043683
PMID
37025593
WOS
000963297700001
Permalien
https://iris.unil.ch/handle/iris/259057
Open Access
Oui
Date de création
2023-04-11T15:34:21.471Z
Date de création dans IRIS
2025-05-21T07:17:39Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

37025593_BIB_DD5F930248D5.pdf

Version du manuscrit

published

Licence

https://creativecommons.org/licenses/by/4.0

Taille

5.04 MB

Format

Adobe PDF

PID Serval

serval:BIB_DD5F930248D5.P001

URN

urn:nbn:ch:serval-BIB_DD5F930248D57

Somme de contrôle

(MD5):956a6ad2992a66184650906b66b2c651

  • Copyright © 2024 UNIL
  • Informations légales