• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Infection dynamics on spatial small-world network models
 
  • Détails
Titre

Infection dynamics on spatial small-world network models

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Physical Review E (statistical, nonlinear, biological, and soft matter physics)  
Auteur(s)
Iotti, B.
Auteure/Auteur
Antonioni, A.
Auteure/Auteur
Bullock, S.
Auteure/Auteur
Darabos, C.
Auteure/Auteur
Tomassini, M.
Auteure/Auteur
Giacobini, M.
Auteure/Auteur
Liens vers les personnes
Tomassini, Marco  
Antonioni, Alberto  
Liens vers les unités
Dép. des systèmes d'information  
ISSN
2470-0045
Statut éditorial
Publié
Date de publication
2017-11-30
Volume
96
Numéro
5
Première page
NA
Peer-reviewed
Oui
Langue
anglais
Résumé
The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.
PID Serval
serval:BIB_589E9D9FFB92
DOI
10.1103/physreve.96.052316
WOS
000416549900001
Permalien
https://iris.unil.ch/handle/iris/100621
Date de création
2018-01-08T13:13:39.071Z
Date de création dans IRIS
2025-05-20T18:35:22Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

29347688_BIB_589E9D9FFB92.pdf

Version du manuscrit

published

Taille

2.46 MB

Format

Adobe PDF

PID Serval

serval:BIB_589E9D9FFB92.P001

URN

urn:nbn:ch:serval-BIB_589E9D9FFB923

Somme de contrôle

(MD5):609046e60d36bb23d9b90932541c2d0f

  • Copyright © 2024 UNIL
  • Informations légales