Titre
Piterbarg theorems for chi-processes with trend
Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Auteur(s)
Hashorva, E.
Auteure/Auteur
Ji, L.
Auteure/Auteur
Liens vers les personnes
Liens vers les unités
ISSN
1386-1999
Statut éditorial
Publié
Date de publication
2015-03
Volume
18
Numéro
1
Première page
37
Dernière page/numéro d’article
64
Peer-reviewed
Oui
Langue
anglais
Résumé
Let chi(n)(t) = (Sigma(n)(i=1) X-i(2)(t))(1/2), t >= 0 be a chi-process with n degrees of freedom where X (i) 's are independent copies of some generic centered Gaussian process X. This paper derives the exact asymptotic behaviour of
P{sup(t is an element of[0,T]) (chi(n)(t) - g(t) > u} as u -> infinity,
where T is a given positive constant, and g(a <...) is some non-negative bounded measurable function. The case g(t)equivalent to 0 has been investigated in numerous contributions by V.I. Piterbarg. Our novel asymptotic results, for both stationary and non-stationary X, are referred to as Piterbarg theorems for chi-processes with trend.
P{sup(t is an element of[0,T]) (chi(n)(t) - g(t) > u} as u -> infinity,
where T is a given positive constant, and g(a <...) is some non-negative bounded measurable function. The case g(t)equivalent to 0 has been investigated in numerous contributions by V.I. Piterbarg. Our novel asymptotic results, for both stationary and non-stationary X, are referred to as Piterbarg theorems for chi-processes with trend.
PID Serval
serval:BIB_115C72020A13
Date de création
2014-07-11T13:32:16.826Z
Date de création dans IRIS
2025-05-20T16:10:18Z
Fichier(s)![Vignette d'image]()
En cours de chargement...
Nom
BIB_115C72020A13.P001.pdf
Version du manuscrit
preprint
Taille
420.05 KB
Format
Adobe PDF
PID Serval
serval:BIB_115C72020A13.P001
URN
urn:nbn:ch:serval-BIB_115C72020A131
Somme de contrôle
(MD5):1b2666b55905b3c07613f939707ef916