Titre
Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate.
Type
article
Institution
Externe
Périodique
Auteur(s)
Chiang, C.L.
Auteure/Auteur
Maier, D.A.
Auteure/Auteur
Kandalaft, L.E.
Auteure/Auteur
Brennan, A.L.
Auteure/Auteur
Lanitis, E.
Auteure/Auteur
Ye, Q.
Auteure/Auteur
Levine, B.L.
Auteure/Auteur
Czerniecki, B.J.
Auteure/Auteur
Powell, D.J.
Auteure/Auteur
Coukos, G.
Auteure/Auteur
Liens vers les personnes
ISSN
1479-5876
Statut éditorial
Publié
Date de publication
2011
Volume
9
Première page
198
Langue
anglais
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov'tPublication Status: epublish
Résumé
BACKGROUND: Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines.
METHODS: Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1) culture media; 2) culture surface; 3) duration of activating DCs with lipopolysaccharide (LPS) and interferon (IFN)-gamma; 4) method of DC harvest; and 5) cryomedia and final DC product formulation.
RESULTS: DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon?Δ surface, but not Corning(®) tissue-culture treated surface and Corning(®) ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC) Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs), and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and replated in fresh media.
CONCLUSIONS: This study examined criteria including DC phenotype, viability, IL-12p70 production and the ability to stimulate MLR as metrics of whole oxidized tumor lysate-pulsed DC immunogenicity and functionality. Development and optimization of this unique method is now being tested in a clinical trial of autologous oxidized tumor lysate-pulsed DC in clinical-scale in recurrent ovarian, primary peritoneal or fallopian tube cancer (NCT01132014).
METHODS: Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced by hypochlorous acid oxidation of tumor cells. Different culture parameters for clinical-scale DC preparation were investigated, including: 1) culture media; 2) culture surface; 3) duration of activating DCs with lipopolysaccharide (LPS) and interferon (IFN)-gamma; 4) method of DC harvest; and 5) cryomedia and final DC product formulation.
RESULTS: DCs cultured in CellGenix DC media containing 2% human AB serum expressed higher levels of maturation markers following lysate-loading and maturation compared to culturing with serum-free CellGenix DC media or AIM-V media, or 2% AB serum supplemented AIM-V media. Nunclon?Δ surface, but not Corning(®) tissue-culture treated surface and Corning(®) ultra-low attachment surface, were suitable for generating an optimal DC phenotype. Recombinant trypsin resulted in reduced major histocompatibility complex (MHC) Class I and II expression on mature lysate-loaded DCs, however presentation of MHC Class I peptides by DCs was not impaired and cell viability was higher compared to cell scraping. Preservation of DCs with an infusible cryomedia containing Plasma-Lyte A, dextrose, sodium chloride injection, human serum albumin, and DMSO yielded higher cell viability compared to using human AB serum containing 10% DMSO. Finally, activating DCs for 16 hours with LPS and IFN-γ stimulated robust mixed leukocyte reactions (MLRs), and high IL-12p70 production in vitro that continued for 24 hours after the cryopreserved DCs were thawed and replated in fresh media.
CONCLUSIONS: This study examined criteria including DC phenotype, viability, IL-12p70 production and the ability to stimulate MLR as metrics of whole oxidized tumor lysate-pulsed DC immunogenicity and functionality. Development and optimization of this unique method is now being tested in a clinical trial of autologous oxidized tumor lysate-pulsed DC in clinical-scale in recurrent ovarian, primary peritoneal or fallopian tube cancer (NCT01132014).
Sujets
PID Serval
serval:BIB_D6501BDAE8F7
PMID
Open Access
Oui
Date de création
2014-10-14T10:42:54.333Z
Date de création dans IRIS
2025-05-20T23:25:27Z
Fichier(s)![Vignette d'image]()
En cours de chargement...
Nom
1479-5876-9-198.pdf
Version du manuscrit
preprint
Taille
4.45 MB
Format
Adobe PDF
PID Serval
serval:BIB_D6501BDAE8F7.P001
Somme de contrôle
(MD5):e3d16ad367fc9f80f7264d23cc7e9879