• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.
 
  • Détails
Titre

Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation.

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Brain Structure and Function  
Auteur(s)
Vidal, J.P.
Auteure/Auteur
Danet, L.
Auteure/Auteur
Péran, P.
Auteure/Auteur
Pariente, J.
Auteure/Auteur
Bach Cuadra, M.
Auteure/Auteur
Zahr, N.M.
Auteure/Auteur
Barbeau, E.J.
Auteure/Auteur
Saranathan, M.
Auteure/Auteur
Liens vers les personnes
Bach Cuadra, Meritxell  
Liens vers les unités
Radiodiagnostic & radiol. Interven.  
ISSN
1863-2661
Statut éditorial
Publié
Date de publication
2024-06
Volume
229
Numéro
5
Première page
1087
Dernière page/numéro d’article
1101
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.
Sujets

Humans

Magnetic Resonance Im...

Thalamic Nuclei/diagn...

Image Processing, Com...

Female

Neural Networks, Comp...

Male

Adult

White Matter/diagnost...

Structural imaging

THOMAS

Thalamic nuclei segme...

Thalamus

PID Serval
serval:BIB_9604D6F4D5B0
DOI
10.1007/s00429-024-02777-5
PMID
38546872
WOS
001194636500002
Permalien
https://iris.unil.ch/handle/iris/207879
Date de création
2024-04-02T08:19:11.565Z
Date de création dans IRIS
2025-05-21T03:15:24Z
  • Copyright © 2024 UNIL
  • Informations légales