• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines).
 
  • Détails
Titre

To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines).

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
European Radiology  
Auteur(s)
Omoumi, P.
Auteure/Auteur
Ducarouge, A.
Auteure/Auteur
Tournier, A.
Auteure/Auteur
Harvey, H.
Auteure/Auteur
Kahn, C.E.
Auteure/Auteur
Louvet-de Verchère, F.
Auteure/Auteur
Pinto Dos Santos, D.
Auteure/Auteur
Kober, T.
Auteure/Auteur
Richiardi, J.
Auteure/Auteur
Liens vers les personnes
Richiardi, Jonas  
Omoumi, Patrick  
Liens vers les unités
Radiodiagnostic & radiol. Interven.  
ISSN
1432-1084
Statut éditorial
Publié
Date de publication
2021-06
Volume
31
Numéro
6
Première page
3786
Dernière page/numéro d’article
3796
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: ppublish
Résumé
Artificial intelligence (AI) has made impressive progress over the past few years, including many applications in medical imaging. Numerous commercial solutions based on AI techniques are now available for sale, forcing radiology practices to learn how to properly assess these tools. While several guidelines describing good practices for conducting and reporting AI-based research in medicine and radiology have been published, fewer efforts have focused on recommendations addressing the key questions to consider when critically assessing AI solutions before purchase. Commercial AI solutions are typically complicated software products, for the evaluation of which many factors are to be considered. In this work, authors from academia and industry have joined efforts to propose a practical framework that will help stakeholders evaluate commercial AI solutions in radiology (the ECLAIR guidelines) and reach an informed decision. Topics to consider in the evaluation include the relevance of the solution from the point of view of each stakeholder, issues regarding performance and validation, usability and integration, regulatory and legal aspects, and financial and support services. KEY POINTS: • Numerous commercial solutions based on artificial intelligence techniques are now available for sale, and radiology practices have to learn how to properly assess these tools. • We propose a framework focusing on practical points to consider when assessing an AI solution in medical imaging, allowing all stakeholders to conduct relevant discussions with manufacturers and reach an informed decision as to whether to purchase an AI commercial solution for imaging applications. • Topics to consider in the evaluation include the relevance of the solution from the point of view of each stakeholder, issues regarding performance and validation, usability and integration, regulatory and legal aspects, and financial and support services.
Sujets

Artificial Intelligen...

Diagnostic Imaging

Humans

Radiography

Radiology

Software

Artificial intelligen...

Equipment and supplie...

Legislation

Workload

PID Serval
serval:BIB_052270573951
DOI
10.1007/s00330-020-07684-x
PMID
33666696
WOS
000625617800004
Permalien
https://iris.unil.ch/handle/iris/107193
Open Access
Oui
Date de création
2020-12-22T14:49:40.481Z
Date de création dans IRIS
2025-05-20T19:06:32Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

Omoumi2021_ECLAIR_guidelines.pdf

Version du manuscrit

published

Licence

https://creativecommons.org/licenses/by/4.0

Taille

322.73 KB

Format

Adobe PDF

PID Serval

serval:BIB_052270573951.P001

URN

urn:nbn:ch:serval-BIB_0522705739514

Somme de contrôle

(MD5):5db980d14c05d36feb5c1dee3edb7abe

  • Copyright © 2024 UNIL
  • Informations légales