• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. A primer on fixed-effects and fixed-effects panel modeling using R, Stata, and SPSS
 
  • Détails
Titre

A primer on fixed-effects and fixed-effects panel modeling using R, Stata, and SPSS

Type
autre
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Auteur(s)
Sommet, Nicolas
Auteure/Auteur
Lipps, Oliver
Auteure/Auteur
Liens vers les personnes
Sommet, Nicolas  
Lipps, Oliver  
Liens vers les unités
ISS  
Fondation FORS  
Langue
anglais
Résumé
Fixed-effects modeling is a powerful tool for estimating within-cluster associations in cross-sectional data and within-participant associations in longitudinal data. Although commonly used by other social scientists, this tool remains largely unknown to psychologists. To address this issue, we offer a pedagogical primer tailored for this audience, complete with R, Stata, and SPSS scripts. This primer is organized into three parts. In PART 1, we show how fixed-effects modeling applies to clustered cross-sectional data. We introduce the concepts of ‘cluster dummies’ and ‘demeaning,’ and provide scripts to estimate the within-school association between sports and depression in a fictional dataset. In PART 2, we show how fixed-effects modeling applies to longitudinal data, and provide scripts to estimate the within-participant association between sports and depression over time in a fictional four-wave dataset. In this part, we cover three additional topics. First, we explain how to calculate effect sizes and offer simulation-based sample size guidelines to detect median-sized within-participant effects with sufficient power. Second, we show how to test two possible interactions: between a time-constant and a time-varying predictor and between two time-varying predictors. Third, we introduce three relevant extensions: first-difference modeling (estimating changes from one wave to the next); time-distributed fixed-effects modeling (estimating changes before, during, and after an individual event); and within-between multilevel modeling (estimating both within- and between-participant associations). In PART 3, we discuss two limitations of fixed-effects modeling: time-varying confounders and reverse causality. We conclude with reflections on causality in nonexperimental data.
Sujets

Primer

Fixed Effects

Fixed-Effects Panel

Dummies

Demeaning

Cluster

Two-Way Fixed-Effects...

Interaction

First Difference

Time-Distributed Fixe...

Within-Between Multil...

Longitudinal

Causality

PID Serval
serval:BIB_41F1D19666F9
DOI
10.31234/osf.io/etn9d
Permalien
https://iris.unil.ch/handle/iris/116115
Date de création
2024-12-11T12:10:58.427Z
Date de création dans IRIS
2025-05-20T19:46:46Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

Fixed-Effects and Fixed-Effects Panel Modeling (Preprint).pdf

Version du manuscrit

preprint

Taille

1.93 MB

Format

Adobe PDF

PID Serval

serval:BIB_41F1D19666F9.P001

URN

urn:nbn:ch:serval-BIB_41F1D19666F90

Somme de contrôle

(MD5):fcc4e4ef9f2c32ac5c14023cb4c468f0

  • Copyright © 2024 UNIL
  • Informations légales