• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Simulation of poro-elastic seismic wave propagation in complex borehole environments using a pseudo-spectral approach
 
  • Détails
Titre

Simulation of poro-elastic seismic wave propagation in complex borehole environments using a pseudo-spectral approach

Type
article de conférence/colloque
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Auteur(s)
Sidler, R.
Auteure/Auteur
Carcione, J.
Auteure/Auteur
Holliger, K.
Auteure/Auteur
Éditeur(s)
Hellmich, C.
Pichler, B.
Adam, D.
Liens vers les personnes
Holliger, Klaus  
Sidler, Rolf  
Liens vers les unités
Institut des sciences de la Terre  
Groupe géophysique  
Maison d’édition
American Society of Civil Engineers
Titre du livre ou conférence/colloque
Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics, Vienna, Austria
ISBN
978-0-7844-1299-2
Statut éditorial
Publié
Date de publication
2013
Première page
154
Dernière page/numéro d’article
163
Langue
anglais
Notes
Sidler2013
Résumé
Borehole seismic experiments are very sensitive to the source and
receiver geometry, the presence or absence of a casing, and to heterogeneities
in the formation surrounding the borehole. For applications that
go beyond the use of first-arrival times, analytical solutions are
generally not sufficient and numerical methods are needed. Here,
we present a novel numerical approach for the comprehensive, flexible,
and accurate simulation of poro-elastic wave propagation in cylindrical
coordinates. An important application of this method is the modeling
of complex seismic wave phenomena in fluid-filled boreholes, which
represents a major, and as of yet largely unresolved, computational
problem in exploration geophysics. We consider a numerical mesh consisting
of three concentric domains representing the borehole fluid in the
center followed by the casing and the surrounding porous formation.
The spatial discretization is based on a Chebyshev expansion in the
radial direction and Fourier expansions in the other directions.
Time stepping is performed through a Runge-Kutta integration scheme.
A domain decomposition method based on the method of characteristics
is used to match the boundary conditions at fluid/porous-solid and
porous-solid/porous-solid interfaces. The viability and accuracy
of the proposed method has been tested and verified in polar coordinates
through comparisons with analytical solutions as well as with the
results obtained with a corresponding, previously published, and
independently benchmarked solution for 2D Cartesian coordinates.
For the cylindrical case, the equations of motion can be solved by
using spectral operators in all dimensions, thus allowing for 3D
heterogeneity and arbitrary receiver and source geometries, or by
applying a Fourier decomposition in the azimuthal direction assuming
rotational symmetry of the model.
Sujets

Simulation

Poroelasticity

Seismic waves

Boreholes

Geometry

PID Serval
serval:BIB_3EDC3D0CA2DF
DOI
10.1061/9780784412992.018
Permalien
https://iris.unil.ch/handle/iris/128827
Date de création
2013-11-25T17:41:22.818Z
Date de création dans IRIS
2025-05-20T20:44:47Z
  • Copyright © 2024 UNIL
  • Informations légales