• Mon espace de travail
  • Aide IRIS
  • Par Publication Par Personne Par Unité
    • English
    • Français
  • Se connecter
Logo du site

IRIS | Système d’Information de la Recherche Institutionnelle

  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
UNIL
  • English
  • Français
Se connecter
IRIS
  • Accueil
  • Personnes
  • Publications
  • Unités
  • Périodiques
  • Mon espace de travail
  • Aide IRIS

Parcourir IRIS

  • Par Publication
  • Par Personne
  • Par Unité
  1. Accueil
  2. IRIS
  3. Publication
  4. Asymptotics of the Sample Coefficient of Variation and the Sample Dispersion
 
  • Détails
Titre

Asymptotics of the Sample Coefficient of Variation and the Sample Dispersion

Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Journal of Statistical Planning and Inference  
Auteur(s)
Albrecher, H.
Auteure/Auteur
Ladoucette, S.
Auteure/Auteur
Teugels, J.
Auteure/Auteur
Liens vers les personnes
Albrecher, Hansjoerg  
Liens vers les unités
Dép. des sciences actuarielles  
ISSN
0378-3758
Statut éditorial
Publié
Date de publication
2010
Volume
140
Numéro
2
Première page
358
Dernière page/numéro d’article
368
Peer-reviewed
Oui
Langue
anglais
Résumé
The coefficient of variation and the dispersion are two examples of widely used measures of variation. We show that their applicability in practice heavily depends on the existence of sufficiently many moments of the underlying distribution. In particular, we offer a set of results that illustrate the behavior of these measures of variation when such a moment condition is not satisfied. Our analysis is based on an auxiliary statistic that is interesting in its own right. Let (X-i)(i >= 1) be a sequence of positive independent and identically distributed random variables with distribution function F and define for n is an element of N

Tn := X-1(2) + X-2(2) + ... + X-n(2)/(X-1 + X-2 + ... + X-n)(2).

Mainly using the theory of functions of regular variation, we derive weak limit theorems for the properly normalized random quantity T-n. given that 1 - F is regularly varying. Following a distributional approach based on T-n, we then analyze asymptotic properties of the sample coefficient of variation. As a second illustration of the same method, we then turn to the sample dispersion. We also include asymptotic properties of the first moments of these quantities. Finally, we give a distributional result on Student's t-statistic which is closely related to T-n. The main message of this paper is to show that the unconscientious use of some measures of variation can lead to wrong conclusions.
Sujets

Weak limit theorems

Functions of regular ...

Domain of attraction ...

Sample coefficient of...

Sample dispersion

Student's t-statistic...

Extreme value theory

PID Serval
serval:BIB_A5E97B82B245
DOI
10.1016/j.jspi.2009.03.026
WOS
000272059900003
Permalien
https://iris.unil.ch/handle/iris/164527
Open Access
Oui
Date de création
2009-08-31T11:39:14.975Z
Date de création dans IRIS
2025-05-20T23:40:11Z
Fichier(s)
En cours de chargement...
Vignette d'image
Nom

BIB_A5E97B82B245.P001.pdf

Version du manuscrit

preprint

Taille

322.77 KB

Format

Adobe PDF

PID Serval

serval:BIB_A5E97B82B245.P001

URN

urn:nbn:ch:serval-BIB_A5E97B82B2455

Somme de contrôle

(MD5):adeac7c2d58209502f3a654c2422fc78

  • Copyright © 2024 UNIL
  • Informations légales