Titre
Rapid detection of microbiota cell type diversity using machine-learned classification of flow cytometry data.
Type
article
Institution
UNIL/CHUV/Unisanté + institutions partenaires
Périodique
Auteur(s)
Özel Duygan, B.D.
Auteure/Auteur
Hadadi, N.
Auteure/Auteur
Babu, A.F.
Auteure/Auteur
Seyfried, M.
Auteure/Auteur
van der Meer, J.R.
Auteure/Auteur
Liens vers les personnes
Liens vers les unités
ISSN
2399-3642
Statut éditorial
Publié
Date de publication
2020-07-15
Volume
3
Numéro
1
Première page
379
Peer-reviewed
Oui
Langue
anglais
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Résumé
The study of complex microbial communities typically entails high-throughput sequencing and downstream bioinformatics analyses. Here we expand and accelerate microbiota analysis by enabling cell type diversity quantification from multidimensional flow cytometry data using a supervised machine learning algorithm of standard cell type recognition (CellCognize). As a proof-of-concept, we trained neural networks with 32 microbial cell and bead standards. The resulting classifiers were extensively validated in silico on known microbiota, showing on average 80% prediction accuracy. Furthermore, the classifiers could detect shifts in microbial communities of unknown composition upon chemical amendment, comparable to results from 16S-rRNA-amplicon analysis. CellCognize was also able to quantify population growth and estimate total community biomass productivity, providing estimates similar to those from <sup>14</sup> C-substrate incorporation. CellCognize complements current sequencing-based methods by enabling rapid routine cell diversity analysis. The pipeline is suitable to optimize cell recognition for recurring microbiota types, such as in human health or engineered systems.
PID Serval
serval:BIB_2AAB8F56D9C5
PMID
Open Access
Oui
Date de création
2020-07-24T13:13:21.478Z
Date de création dans IRIS
2025-05-20T14:05:13Z
Fichier(s)![Vignette d'image]()
En cours de chargement...
Nom
32669688_BIB_2AAB8F56D9C5.pdf
Version du manuscrit
published
Licence
https://creativecommons.org/licenses/by/4.0
Taille
2 MB
Format
Adobe PDF
PID Serval
serval:BIB_2AAB8F56D9C5.P001
URN
urn:nbn:ch:serval-BIB_2AAB8F56D9C54
Somme de contrôle
(MD5):80c7ae31f0f8c83c2aa1ea2ab8a4bc53